.. _program_listing_file_include_coal_octree.h: Program Listing for File octree.h ================================= |exhale_lsh| :ref:`Return to documentation for file ` (``include/coal/octree.h``) .. |exhale_lsh| unicode:: U+021B0 .. UPWARDS ARROW WITH TIP LEFTWARDS .. code-block:: cpp /* * Software License Agreement (BSD License) * * Copyright (c) 2011-2014, Willow Garage, Inc. * Copyright (c) 2014-2015, Open Source Robotics Foundation * Copyright (c) 2022-2024, Inria * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above * copyright notice, this list of conditions and the following * disclaimer in the documentation and/or other materials provided * with the distribution. * * Neither the name of Open Source Robotics Foundation nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ #ifndef COAL_OCTREE_H #define COAL_OCTREE_H #include #include #include "coal/fwd.hh" #include "coal/BV/AABB.h" #include "coal/collision_object.h" namespace coal { class COAL_DLLAPI OcTree : public CollisionGeometry { protected: shared_ptr tree; Scalar default_occupancy; Scalar occupancy_threshold; Scalar free_threshold; public: typedef octomap::OcTreeNode OcTreeNode; explicit OcTree(Scalar resolution) : tree(shared_ptr( new octomap::OcTree(resolution))) { default_occupancy = Scalar(tree->getOccupancyThres()); // default occupancy/free threshold is consistent with default setting from // octomap occupancy_threshold = Scalar(tree->getOccupancyThres()); free_threshold = 0; } explicit OcTree(const shared_ptr& tree_) : tree(tree_) { default_occupancy = Scalar(tree->getOccupancyThres()); // default occupancy/free threshold is consistent with default setting from // octomap occupancy_threshold = Scalar(tree->getOccupancyThres()); free_threshold = 0; } OcTree(const OcTree& other) : CollisionGeometry(other), tree(other.tree), default_occupancy(other.default_occupancy), occupancy_threshold(other.occupancy_threshold), free_threshold(other.free_threshold) {} OcTree* clone() const { return new OcTree(*this); } shared_ptr getTree() const { return tree; } void exportAsObjFile(const std::string& filename) const; void computeLocalAABB() { typedef Eigen::Matrix Vec3float; Vec3float max_extent, min_extent; octomap::OcTree::iterator it = tree->begin((unsigned char)tree->getTreeDepth()); octomap::OcTree::iterator end = tree->end(); if (it == end) return; { const octomap::point3d& coord = it.getCoordinate(); // getCoordinate returns a copy max_extent = min_extent = Eigen::Map(&coord.x()); for (++it; it != end; ++it) { const octomap::point3d& coord = it.getCoordinate(); const Vec3float pos = Eigen::Map(&coord.x()); max_extent = max_extent.array().max(pos.array()); min_extent = min_extent.array().min(pos.array()); } } // Account for the size of the boxes. const Scalar resolution = Scalar(tree->getResolution()); max_extent.array() += float(resolution / 2.); min_extent.array() -= float(resolution / 2.); aabb_local = AABB(min_extent.cast(), max_extent.cast()); aabb_center = aabb_local.center(); aabb_radius = (aabb_local.min_ - aabb_center).norm(); } AABB getRootBV() const { Scalar delta = Scalar((1 << tree->getTreeDepth()) * tree->getResolution() / 2); // std::cout << "octree size " << delta << std::endl; return AABB(Vec3s(-delta, -delta, -delta), Vec3s(delta, delta, delta)); } unsigned int getTreeDepth() const { return tree->getTreeDepth(); } unsigned long size() const { return tree->size(); } Scalar getResolution() const { return Scalar(tree->getResolution()); } OcTreeNode* getRoot() const { return tree->getRoot(); } bool isNodeOccupied(const OcTreeNode* node) const { // return tree->isNodeOccupied(node); return node->getOccupancy() >= occupancy_threshold; } bool isNodeFree(const OcTreeNode* node) const { // return false; // default no definitely free node return node->getOccupancy() <= free_threshold; } bool isNodeUncertain(const OcTreeNode* node) const { return (!isNodeOccupied(node)) && (!isNodeFree(node)); } std::vector toBoxes() const { std::vector boxes; boxes.reserve(tree->size() / 2); for (octomap::OcTree::iterator it = tree->begin((unsigned char)tree->getTreeDepth()), end = tree->end(); it != end; ++it) { // if(tree->isNodeOccupied(*it)) if (isNodeOccupied(&*it)) { Scalar x = Scalar(it.getX()); Scalar y = Scalar(it.getY()); Scalar z = Scalar(it.getZ()); Scalar size = Scalar(it.getSize()); Scalar c = Scalar((*it).getOccupancy()); Scalar t = Scalar(tree->getOccupancyThres()); Vec6s box; box << x, y, z, size, c, t; boxes.push_back(box); } } return boxes; } std::vector tobytes() const { typedef Eigen::Matrix Vec3sloat; const size_t total_size = (tree->size() * sizeof(Scalar) * 3) / 2; std::vector bytes; bytes.reserve(total_size); for (octomap::OcTree::iterator it = tree->begin((unsigned char)tree->getTreeDepth()), end = tree->end(); it != end; ++it) { const Vec3s box_pos = Eigen::Map(&it.getCoordinate().x()).cast(); if (isNodeOccupied(&*it)) std::copy(box_pos.data(), box_pos.data() + sizeof(Scalar) * 3, std::back_inserter(bytes)); } return bytes; } Scalar getOccupancyThres() const { return occupancy_threshold; } Scalar getFreeThres() const { return free_threshold; } Scalar getDefaultOccupancy() const { return default_occupancy; } void setCellDefaultOccupancy(Scalar d) { default_occupancy = d; } void setOccupancyThres(Scalar d) { occupancy_threshold = d; } void setFreeThres(Scalar d) { free_threshold = d; } OcTreeNode* getNodeChild(OcTreeNode* node, unsigned int childIdx) { #if OCTOMAP_VERSION_AT_LEAST(1, 8, 0) return tree->getNodeChild(node, childIdx); #else return node->getChild(childIdx); #endif } const OcTreeNode* getNodeChild(const OcTreeNode* node, unsigned int childIdx) const { #if OCTOMAP_VERSION_AT_LEAST(1, 8, 0) return tree->getNodeChild(node, childIdx); #else return node->getChild(childIdx); #endif } bool nodeChildExists(const OcTreeNode* node, unsigned int childIdx) const { #if OCTOMAP_VERSION_AT_LEAST(1, 8, 0) return tree->nodeChildExists(node, childIdx); #else return node->childExists(childIdx); #endif } bool nodeHasChildren(const OcTreeNode* node) const { #if OCTOMAP_VERSION_AT_LEAST(1, 8, 0) return tree->nodeHasChildren(node); #else return node->hasChildren(); #endif } OBJECT_TYPE getObjectType() const { return OT_OCTREE; } NODE_TYPE getNodeType() const { return GEOM_OCTREE; } private: virtual bool isEqual(const CollisionGeometry& _other) const { const OcTree* other_ptr = dynamic_cast(&_other); if (other_ptr == nullptr) return false; const OcTree& other = *other_ptr; return (tree.get() == other.tree.get() || toBoxes() == other.toBoxes()) && default_occupancy == other.default_occupancy && occupancy_threshold == other.occupancy_threshold && free_threshold == other.free_threshold; } public: EIGEN_MAKE_ALIGNED_OPERATOR_NEW }; static inline void computeChildBV(const AABB& root_bv, unsigned int i, AABB& child_bv) { const Scalar half = Scalar(0.5); if (i & 1) { child_bv.min_[0] = (root_bv.min_[0] + root_bv.max_[0]) * half; child_bv.max_[0] = root_bv.max_[0]; } else { child_bv.min_[0] = root_bv.min_[0]; child_bv.max_[0] = (root_bv.min_[0] + root_bv.max_[0]) * half; } if (i & 2) { child_bv.min_[1] = (root_bv.min_[1] + root_bv.max_[1]) * half; child_bv.max_[1] = root_bv.max_[1]; } else { child_bv.min_[1] = root_bv.min_[1]; child_bv.max_[1] = (root_bv.min_[1] + root_bv.max_[1]) * half; } if (i & 4) { child_bv.min_[2] = (root_bv.min_[2] + root_bv.max_[2]) * half; child_bv.max_[2] = root_bv.max_[2]; } else { child_bv.min_[2] = root_bv.min_[2]; child_bv.max_[2] = (root_bv.min_[2] + root_bv.max_[2]) * half; } } COAL_DLLAPI OcTreePtr_t makeOctree(const Eigen::Matrix& point_cloud, const Scalar resolution); } // namespace coal #endif