Template Class NormalDistributionsTransform
Defined in File ndt_omp.h
Inheritance Relationships
Base Type
public pcl::Registration< PointSource, PointTarget >
Class Documentation
-
template<typename PointSource, typename PointTarget>
class NormalDistributionsTransform : public pcl::Registration<PointSource, PointTarget> A 3D Normal Distribution Transform registration implementation for point cloud data.
- Author
Brian Okorn (Space and Naval Warfare Systems Center Pacific)
Note
For more information please see Magnusson, M. (2009). The Three-Dimensional Normal-Distributions Transform — an Efficient Representation for Registration, Surface Analysis, and Loop Detection. PhD thesis, Orebro University. Orebro Studies in Technology 36., More, J., and Thuente, D. (1994). Line Search Algorithm with Guaranteed Sufficient Decrease In ACM Transactions on Mathematical Software. and Sun, W. and Yuan, Y, (2006) Optimization Theory and Methods: Nonlinear Programming. 89-100
Note
Math refactored by Todor Stoyanov.
Public Types
-
typedef pcl::shared_ptr<NormalDistributionsTransform<PointSource, PointTarget>> Ptr
-
typedef pcl::shared_ptr<const NormalDistributionsTransform<PointSource, PointTarget>> ConstPtr
Public Functions
-
NormalDistributionsTransform()
Constructor. Sets outlier_ratio_ to 0.35, step_size_ to 0.05 and resolution_ to 1.0.
-
inline virtual ~NormalDistributionsTransform()
Empty destructor.
-
inline void setNumThreads(int n)
-
inline void setInputTarget(const PointCloudTargetConstPtr &cloud)
Provide a pointer to the input target (e.g., the point cloud that we want to align the input source to).
- Parameters:
cloud – [in] the input point cloud target
-
inline void setResolution(float resolution)
Set/change the voxel grid resolution.
- Parameters:
resolution – [in] side length of voxels
-
inline float getResolution() const
Get voxel grid resolution.
- Returns:
side length of voxels
-
inline double getStepSize() const
Get the newton line search maximum step length.
- Returns:
maximum step length
-
inline void setStepSize(double step_size)
Set/change the newton line search maximum step length.
- Parameters:
step_size – [in] maximum step length
-
inline double getOutlierRatio() const
Get the point cloud outlier ratio.
- Returns:
outlier ratio
-
inline void setOutlierRatio(double outlier_ratio)
Set/change the point cloud outlier ratio.
- Parameters:
outlier_ratio – [in] outlier ratio
-
inline void setNeighborhoodSearchMethod(NeighborSearchMethod method)
-
inline double getTransformationProbability() const
Get the registration alignment probability.
- Returns:
transformation probability
-
inline int getFinalNumIteration() const
Get the number of iterations required to calculate alignment.
- Returns:
final number of iterations
-
double calculateScore(const PointCloudSource &cloud) const
Public Members
-
NeighborSearchMethod search_method
Public Static Functions
-
static inline void convertTransform(const Eigen::Matrix<double, 6, 1> &x, Eigen::Affine3f &trans)
Convert 6 element transformation vector to affine transformation.
- Parameters:
x – [in] transformation vector of the form [x, y, z, roll, pitch, yaw]
trans – [out] affine transform corresponding to given transformation vector
-
static inline void convertTransform(const Eigen::Matrix<double, 6, 1> &x, Eigen::Matrix4f &trans)
Convert 6 element transformation vector to transformation matrix.
- Parameters:
x – [in] transformation vector of the form [x, y, z, roll, pitch, yaw]
trans – [out] 4x4 transformation matrix corresponding to given transformation vector
Protected Types
-
typedef pcl::Registration<PointSource, PointTarget>::PointCloudSource PointCloudSource
-
typedef PointCloudSource::Ptr PointCloudSourcePtr
-
typedef PointCloudSource::ConstPtr PointCloudSourceConstPtr
-
typedef pcl::Registration<PointSource, PointTarget>::PointCloudTarget PointCloudTarget
-
typedef PointCloudTarget::Ptr PointCloudTargetPtr
-
typedef PointCloudTarget::ConstPtr PointCloudTargetConstPtr
-
typedef pcl::PointIndices::Ptr PointIndicesPtr
-
typedef pcl::PointIndices::ConstPtr PointIndicesConstPtr
-
typedef pclomp::VoxelGridCovariance<PointTarget> TargetGrid
Typename of searchable voxel grid containing mean and covariance.
-
typedef TargetGrid *TargetGridPtr
Typename of pointer to searchable voxel grid.
-
typedef const TargetGrid *TargetGridConstPtr
Typename of const pointer to searchable voxel grid.
-
typedef TargetGrid::LeafConstPtr TargetGridLeafConstPtr
Typename of const pointer to searchable voxel grid leaf.
Protected Functions
-
inline virtual void computeTransformation(PointCloudSource &output)
Estimate the transformation and returns the transformed source (input) as output.
- Parameters:
output – [out] the resultant input transformed point cloud dataset
-
virtual void computeTransformation(PointCloudSource &output, const Eigen::Matrix4f &guess)
Estimate the transformation and returns the transformed source (input) as output.
- Parameters:
output – [out] the resultant input transformed point cloud dataset
guess – [in] the initial gross estimation of the transformation
-
inline void init()
Initiate covariance voxel structure.
-
double computeDerivatives(Eigen::Matrix<double, 6, 1> &score_gradient, Eigen::Matrix<double, 6, 6> &hessian, PointCloudSource &trans_cloud, Eigen::Matrix<double, 6, 1> &p, bool compute_hessian = true)
Compute derivatives of probability function w.r.t. the transformation vector.
Note
Equation 6.10, 6.12 and 6.13 [Magnusson 2009].
- Parameters:
score_gradient – [out] the gradient vector of the probability function w.r.t. the transformation vector
hessian – [out] the hessian matrix of the probability function w.r.t. the transformation vector
trans_cloud – [in] transformed point cloud
p – [in] the current transform vector
compute_hessian – [in] flag to calculate hessian, unnecessary for step calculation.
-
double updateDerivatives(Eigen::Matrix<double, 6, 1> &score_gradient, Eigen::Matrix<double, 6, 6> &hessian, const Eigen::Matrix<float, 4, 6> &point_gradient_, const Eigen::Matrix<float, 24, 6> &point_hessian_, const Eigen::Vector3d &x_trans, const Eigen::Matrix3d &c_inv, bool compute_hessian = true) const
Compute individual point contributions to derivatives of probability function w.r.t. the transformation vector.
Note
Equation 6.10, 6.12 and 6.13 [Magnusson 2009].
- Parameters:
score_gradient – [inout] the gradient vector of the probability function w.r.t. the transformation vector
hessian – [inout] the hessian matrix of the probability function w.r.t. the transformation vector
x_trans – [in] transformed point minus mean of occupied covariance voxel
c_inv – [in] covariance of occupied covariance voxel
compute_hessian – [in] flag to calculate hessian, unnecessary for step calculation.
-
void computeAngleDerivatives(Eigen::Matrix<double, 6, 1> &p, bool compute_hessian = true)
Precompute angular components of derivatives.
Note
Equation 6.19 and 6.21 [Magnusson 2009].
- Parameters:
p – [in] the current transform vector
compute_hessian – [in] flag to calculate hessian, unnecessary for step calculation.
-
void computePointDerivatives(Eigen::Vector3d &x, Eigen::Matrix<double, 3, 6> &point_gradient_, Eigen::Matrix<double, 18, 6> &point_hessian_, bool compute_hessian = true) const
Compute point derivatives.
Note
Equation 6.18-21 [Magnusson 2009].
- Parameters:
x – [in] point from the input cloud
compute_hessian – [in] flag to calculate hessian, unnecessary for step calculation.
-
void computePointDerivatives(Eigen::Vector3d &x, Eigen::Matrix<float, 4, 6> &point_gradient_, Eigen::Matrix<float, 24, 6> &point_hessian_, bool compute_hessian = true) const
-
void computeHessian(Eigen::Matrix<double, 6, 6> &hessian, PointCloudSource &trans_cloud, Eigen::Matrix<double, 6, 1> &p)
Compute hessian of probability function w.r.t. the transformation vector.
Note
Equation 6.13 [Magnusson 2009].
- Parameters:
hessian – [out] the hessian matrix of the probability function w.r.t. the transformation vector
trans_cloud – [in] transformed point cloud
p – [in] the current transform vector
-
void updateHessian(Eigen::Matrix<double, 6, 6> &hessian, const Eigen::Matrix<double, 3, 6> &point_gradient_, const Eigen::Matrix<double, 18, 6> &point_hessian_, const Eigen::Vector3d &x_trans, const Eigen::Matrix3d &c_inv) const
Compute individual point contributions to hessian of probability function w.r.t. the transformation vector.
Note
Equation 6.13 [Magnusson 2009].
- Parameters:
hessian – [inout] the hessian matrix of the probability function w.r.t. the transformation vector
x_trans – [in] transformed point minus mean of occupied covariance voxel
c_inv – [in] covariance of occupied covariance voxel
-
double computeStepLengthMT(const Eigen::Matrix<double, 6, 1> &x, Eigen::Matrix<double, 6, 1> &step_dir, double step_init, double step_max, double step_min, double &score, Eigen::Matrix<double, 6, 1> &score_gradient, Eigen::Matrix<double, 6, 6> &hessian, PointCloudSource &trans_cloud)
Compute line search step length and update transform and probability derivatives using More-Thuente method.
Note
Search Algorithm [More, Thuente 1994]
- Parameters:
x – [in] initial transformation vector, \( x \) in Equation 1.3 (Moore, Thuente 1994) and \( \vec{p} \) in Algorithm 2 [Magnusson 2009]
step_dir – [in] descent direction, \( p \) in Equation 1.3 (Moore, Thuente 1994) and \( \delta \vec{p} \) normalized in Algorithm 2 [Magnusson 2009]
step_init – [in] initial step length estimate, \( \alpha_0 \) in Moore-Thuente (1994) and the normal of \( \delta \vec{p} \) in Algorithm 2 [Magnusson 2009]
step_max – [in] maximum step length, \( \alpha_max \) in Moore-Thuente (1994)
step_min – [in] minimum step length, \( \alpha_min \) in Moore-Thuente (1994)
score – [out] final score function value, \( f(x + \alpha p) \) in Equation 1.3 (Moore, Thuente 1994) and \( score \) in Algorithm 2 [Magnusson 2009]
score_gradient – [inout] gradient of score function w.r.t. transformation vector, \( f'(x + \alpha p) \) in Moore-Thuente (1994) and \( \vec{g} \) in Algorithm 2 [Magnusson 2009]
hessian – [out] hessian of score function w.r.t. transformation vector, \( f''(x + \alpha p) \) in Moore-Thuente (1994) and \( H \) in Algorithm 2 [Magnusson 2009]
trans_cloud – [inout] transformed point cloud, \( X \) transformed by \( T(\vec{p},\vec{x}) \) in Algorithm 2 [Magnusson 2009]
- Returns:
final step length
-
bool updateIntervalMT(double &a_l, double &f_l, double &g_l, double &a_u, double &f_u, double &g_u, double a_t, double f_t, double g_t)
Update interval of possible step lengths for More-Thuente method, \( I \) in More-Thuente (1994)
Note
Updating Algorithm until some value satisfies \( \psi(\alpha_k) \leq 0 \) and \( \phi'(\alpha_k) \geq 0 \) and Modified Updating Algorithm from then on [More, Thuente 1994].
- Parameters:
a_l – [inout] first endpoint of interval \( I \), \( \alpha_l \) in Moore-Thuente (1994)
f_l – [inout] value at first endpoint, \( f_l \) in Moore-Thuente (1994), \( \psi(\alpha_l) \) for Update Algorithm and \( \phi(\alpha_l) \) for Modified Update Algorithm
g_l – [inout] derivative at first endpoint, \( g_l \) in Moore-Thuente (1994), \( \psi'(\alpha_l) \) for Update Algorithm and \( \phi'(\alpha_l) \) for Modified Update Algorithm
a_u – [inout] second endpoint of interval \( I \), \( \alpha_u \) in Moore-Thuente (1994)
f_u – [inout] value at second endpoint, \( f_u \) in Moore-Thuente (1994), \( \psi(\alpha_u) \) for Update Algorithm and \( \phi(\alpha_u) \) for Modified Update Algorithm
g_u – [inout] derivative at second endpoint, \( g_u \) in Moore-Thuente (1994), \( \psi'(\alpha_u) \) for Update Algorithm and \( \phi'(\alpha_u) \) for Modified Update Algorithm
a_t – [in] trial value, \( \alpha_t \) in Moore-Thuente (1994)
f_t – [in] value at trial value, \( f_t \) in Moore-Thuente (1994), \( \psi(\alpha_t) \) for Update Algorithm and \( \phi(\alpha_t) \) for Modified Update Algorithm
g_t – [in] derivative at trial value, \( g_t \) in Moore-Thuente (1994), \( \psi'(\alpha_t) \) for Update Algorithm and \( \phi'(\alpha_t) \) for Modified Update Algorithm
- Returns:
if interval converges
-
double trialValueSelectionMT(double a_l, double f_l, double g_l, double a_u, double f_u, double g_u, double a_t, double f_t, double g_t)
Select new trial value for More-Thuente method.
Note
Trial Value Selection [More, Thuente 1994], \( \psi(\alpha_k) \) is used for \( f_k \) and \( g_k \) until some value satisfies the test \( \psi(\alpha_k) \leq 0 \) and \( \phi'(\alpha_k) \geq 0 \) then \( \phi(\alpha_k) \) is used from then on.
Note
Interpolation Minimizer equations from Optimization Theory and Methods: Nonlinear Programming By Wenyu Sun, Ya-xiang Yuan (89-100).
- Parameters:
a_l – [in] first endpoint of interval \( I \), \( \alpha_l \) in Moore-Thuente (1994)
f_l – [in] value at first endpoint, \( f_l \) in Moore-Thuente (1994)
g_l – [in] derivative at first endpoint, \( g_l \) in Moore-Thuente (1994)
a_u – [in] second endpoint of interval \( I \), \( \alpha_u \) in Moore-Thuente (1994)
f_u – [in] value at second endpoint, \( f_u \) in Moore-Thuente (1994)
g_u – [in] derivative at second endpoint, \( g_u \) in Moore-Thuente (1994)
a_t – [in] previous trial value, \( \alpha_t \) in Moore-Thuente (1994)
f_t – [in] value at previous trial value, \( f_t \) in Moore-Thuente (1994)
g_t – [in] derivative at previous trial value, \( g_t \) in Moore-Thuente (1994)
- Returns:
new trial value
-
inline double auxiliaryFunction_PsiMT(double a, double f_a, double f_0, double g_0, double mu = 1.e-4)
Auxiliary function used to determine endpoints of More-Thuente interval.
Note
\( \psi(\alpha) \) in Equation 1.6 (Moore, Thuente 1994)
- Parameters:
a – [in] the step length, \( \alpha \) in More-Thuente (1994)
f_a – [in] function value at step length a, \( \phi(\alpha) \) in More-Thuente (1994)
f_0 – [in] initial function value, \( \phi(0) \) in Moore-Thuente (1994)
g_0 – [in] initial function gradiant, \( \phi'(0) \) in More-Thuente (1994)
mu – [in] the step length, constant \( \mu \) in Equation 1.1 [More, Thuente 1994]
- Returns:
sufficient decrease value
-
inline double auxiliaryFunction_dPsiMT(double g_a, double g_0, double mu = 1.e-4)
Auxiliary function derivative used to determine endpoints of More-Thuente interval.
Note
\( \psi'(\alpha) \), derivative of Equation 1.6 (Moore, Thuente 1994)
- Parameters:
g_a – [in] function gradient at step length a, \( \phi'(\alpha) \) in More-Thuente (1994)
g_0 – [in] initial function gradiant, \( \phi'(0) \) in More-Thuente (1994)
mu – [in] the step length, constant \( \mu \) in Equation 1.1 [More, Thuente 1994]
- Returns:
sufficient decrease derivative
Protected Attributes
-
TargetGrid target_cells_
The voxel grid generated from target cloud containing point means and covariances.
-
float resolution_
The side length of voxels.
-
double step_size_
The maximum step length.
-
double outlier_ratio_
The ratio of outliers of points w.r.t. a normal distribution, Equation 6.7 [Magnusson 2009].
-
double gauss_d1_
The normalization constants used fit the point distribution to a normal distribution, Equation 6.8 [Magnusson 2009].
-
double gauss_d2_
-
double gauss_d3_
-
double trans_probability_
The probability score of the transform applied to the input cloud, Equation 6.9 and 6.10 [Magnusson 2009].
-
Eigen::Vector3d j_ang_a_
Precomputed Angular Gradient.
The precomputed angular derivatives for the jacobian of a transformation vector, Equation 6.19 [Magnusson 2009].
-
Eigen::Vector3d j_ang_b_
-
Eigen::Vector3d j_ang_c_
-
Eigen::Vector3d j_ang_d_
-
Eigen::Vector3d j_ang_e_
-
Eigen::Vector3d j_ang_f_
-
Eigen::Vector3d j_ang_g_
-
Eigen::Vector3d j_ang_h_
-
Eigen::Matrix<float, 8, 4> j_ang
-
Eigen::Vector3d h_ang_a2_
Precomputed Angular Hessian.
The precomputed angular derivatives for the hessian of a transformation vector, Equation 6.19 [Magnusson 2009].
-
Eigen::Vector3d h_ang_a3_
-
Eigen::Vector3d h_ang_b2_
-
Eigen::Vector3d h_ang_b3_
-
Eigen::Vector3d h_ang_c2_
-
Eigen::Vector3d h_ang_c3_
-
Eigen::Vector3d h_ang_d1_
-
Eigen::Vector3d h_ang_d2_
-
Eigen::Vector3d h_ang_d3_
-
Eigen::Vector3d h_ang_e1_
-
Eigen::Vector3d h_ang_e2_
-
Eigen::Vector3d h_ang_e3_
-
Eigen::Vector3d h_ang_f1_
-
Eigen::Vector3d h_ang_f2_
-
Eigen::Vector3d h_ang_f3_
-
Eigen::Matrix<float, 16, 4> h_ang
-
int num_threads_
The first order derivative of the transformation of a point w.r.t. the transform vector, \( J_E \) in Equation 6.18 [Magnusson 2009].
The second order derivative of the transformation of a point w.r.t. the transform vector, \( H_E \) in Equation 6.20 [Magnusson 2009].